DNA methyltransferase inhibition enhances apoptosis induced by histone deacetylase inhibitors.
نویسندگان
چکیده
Histone acetylation has long been associated with transcriptional activation, whereas conversely, deacetylation of histones is associated with gene silencing and transcriptional repression. Here we report that inhibitors of histone deacetylase (HDAC), depsipeptide and trichostatin A, induce apoptotic cell death in human lung cancer cells as demonstrated by DNA flow cytometry and Western immunoblot to detect cleavage of poly(ADP-ribose) polymerase. This HDAC inhibitorinduced apoptosis is greatly enhanced in the presence of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (DAC). The HDAC inhibitor-induced apoptosis appears to be p53 independent, because no change in apoptotic cell death was observed in H1299 cells that expressed exogenous wild-type p53 (H1299 cells express no endogenous p53 protein). To further investigate the mechanism of DAC-enhanced, HDAC inhibitor-induced apoptosis, we analyzed histone H3 and H4 acetylation by Western immunoblotting. Results showed that depsipeptide induced a dose-dependent acetylation of histones H3 and H4, which was greatly increased in DAC-pretreated cells. By analyzing the acetylation of specific lysine residues at the amino terminus of histone H4 (Ac-5, Ac-8, Ac-12, and Ac-16), we found that the enhancement of HDAC inhibitor-induced acetylation of histones in the DAC-pretreated cells was not lysine site specific. These results demonstrate that DNA methylation status is an important determinant of apoptotic susceptibility to HDAC inhibitors.
منابع مشابه
HDAC Inhibitors and Heat Shock Proteins (Hsps)
Epigenetic alterations, including DNA acetylation, hypermethylation and hypomethylation, and the associated transcriptional changes of the affected genes are central to the evolution and progression of various human cancers, including pancreatic cancer. Cancer-associated epigenetic alterations are attractive therapeutic targets because such epigenetic alterations, unlike genetic changes, are po...
متن کاملStrategic Perspectives on Improved Anti-Tumor Drug Effects in Combination with Clinically Equivalent or Lower Concentrations of Epigenetic Modifiers, DNA Methyltransferase Inhibitors, and Histone Deacetylase Inhibitors
The aim of this research is to facilitate the pursuit of improved chemotherapeutic drugs in combination with epigenetic modifiers. Both in vitro studies and a clinical study have described the combinations of DNA methyltransferase inhibitors with irinotecan and histone deacetylase inhibitors with 5-fluorouracil or gemcitabine to enhance their anti-cancer activities. The molecular mechanisms inv...
متن کاملThe role of DNA damage and repair in decitabine-mediated apoptosis in multiple myeloma
DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) are under investigation for the treatment of cancer, including the plasma cell malignancy multiple myeloma (MM). Evidence exists that DNA damage and repair contribute to the cytotoxicity mediated by the DNMTi decitabine. Here, we investigated the DNA damage response (DDR) induced by decitabine in MM using 4 huma...
متن کاملEffect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract
Effect of trichostatin A on histone deacetylase 1 (HDAC 1) and CIP/KIP (p21CIP1/WAF1, p27KIP1, and p57KIP2) gene expression, cell growth inhibition and apoptosis induction in lung cancer COR-L105 cell line. Abstract Background: Lung cancer is one the leading cause of cancer-related death worldwide, with more than 1.2 million deaths each year. In addition to genetic mutations, epigenetic modif...
متن کاملbinations of DNA Methyltransferase and Histone cetylase Inhibitors Induce DNA Damage in Small l Lung Cancer Cells: Correlation of Resistance
wnloaded ause epigenetic inhibitors can reduce cancer cell proliferation, we tested the hypothesis that concurrent tion of histone acetylation and DNA methylation could synergistically reduce the viability of small cell ancer (SCLC) cells. Sub-IC50 concentrations of the DNA methyltransferase (DNMT) inhibitor decitabine A-dC) and the histone deacetylase (HDAC) inhibitors (LBH589 or MGCD0103) syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 61 4 شماره
صفحات -
تاریخ انتشار 2001